Computing Analysis for First Zagreb Connection Index and Coindex of Resultant Graphs
نویسندگان
چکیده
A numeric parameter which studies the behaviour, structural, toxicological, experimental, and physicochemical properties of chemical compounds under several graphs’ isomorphism is known as topological index. In 2018, Ali Trinajsti? studied first Zagreb connection index Z C 1 to evaluate value a molecule. This concept was by Gutman in 1972 find solution id="M2"> ? -electron energy alternant hydrocarbons. this paper, coindex are obtained form exact formulae upper bounds for resultant graphs terms different indices their factor graphs, where product-related operations on such tensor product, strong symmetric difference, disjunction. At end, an analysis results aforesaid interpreted with help numerical values graphical depictions.
منابع مشابه
A note on the first Zagreb index and coindex of graphs
Let $G=(V,E)$, $V={v_1,v_2,ldots,v_n}$, be a simple graph with$n$ vertices, $m$ edges and a sequence of vertex degrees$Delta=d_1ge d_2ge cdots ge d_n=delta$, $d_i=d(v_i)$. Ifvertices $v_i$ and $v_j$ are adjacent in $G$, it is denoted as $isim j$, otherwise, we write $insim j$. The first Zagreb index isvertex-degree-based graph invariant defined as$M_1(G)=sum_{i=1}^nd_i^2$, whereas the first Zag...
متن کاملOn the Multiplicative Zagreb Coindex of Graphs
Abstract. For a (molecular) graph G with vertex set V (G) and edge set E(G), the first and second Zagreb indices of G are defined as M1(G) = ∑ v∈V (G) dG(v) 2 and M2(G) = ∑ uv∈E(G) dG(u)dG(v), respectively, where dG(v) is the degree of vertex v in G. The alternative expression of M1(G) is ∑ uv∈E(G)(dG(u) + dG(v)). Recently Ashrafi, Došlić and Hamzeh introduced two related graphical invariants M...
متن کاملNote on Properties of First Zagreb Index of Graphs
Let G be a graph. The first Zagreb M1(G) of graph G is defined as: M1(G) = uV(G) deg(u)2. In this paper, we prove that each even number except 4 and 8 is a first Zagreb index of a caterpillar. Also, we show that the fist Zagreb index cannot be an odd number. Moreover, we obtain the fist Zagreb index of some graph operations.
متن کاملComputing the First and Third Zagreb Polynomials of Cartesian Product of Graphs
Let G be a graph. The first Zagreb polynomial M1(G, x) and the third Zagreb polynomial M3(G, x) of the graph G are defined as: ( ) ( , ) [ ] e uv E G G x x d(u) + d(v) M1 , ( , ) euvE(G) G x x|d(u) - d(v)| M3 . In this paper, we compute the first and third Zagreb polynomials of Cartesian product of two graphs and a type of dendrimers.
متن کاملProbabilistic Analysis of the First Zagreb Index
In this paper we study the first Zagreb index in bucket recursive trees containing buckets with variable capacities. This model was introduced by Kazemi in 2012. We obtain the mean and variance of the first Zagreb index and introduce a martingale based on this quantity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2021
ISSN: ['1026-7077', '1563-5147', '1024-123X']
DOI: https://doi.org/10.1155/2021/6019517